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abstract: A key feature of biological systems is the emergence of
higher-order structures from interacting units, such as the devel-
opment of tissues from individual cells and the elaborate divisions
of labor in insect societies. Little is known, however, of how evo-
lutionary competition among individuals affects biological organi-
zation. Here we explore this link in bacterial biofilms, concrete sys-
tems that are well known for higher-order structures. We present a
mechanistic model of cell growth at a surface, and we show that
tension between growth and competition for nutrients can explain
how empirically observed patterns emerge in biofilms. We then apply
our model to evolutionary simulations and observe that the main-
tenance of patterns requires cooperation between cells. Specifically,
when different genotypes meet and compete, natural selection favors
energetically costly spreading strategies, like polymer secretion, that
simultaneously reduce productivity and disrupt the spatial patterns.
Our theory provides a formal link between higher-level patterning
and the potential for evolutionary conflict by showing that both can
arise from a single set of scale-dependent processes. Moreover, and
contrary to previous theory, our analysis predicts an antagonistic
relationship between evolutionary conflict and pattern formation:
conflict drives disorder.

Keywords: sociobiology, cooperation, self-organization, pattern for-
mation, Pseudomonas aeruginosa.

Introduction

The study of group behavior is dominated by two com-
plementary but largely distinct traditions. One focuses on
the evolution of cooperation and group-level traits, and it
asks how these factors remain stable in the face of evo-
lutionary conflict at lower levels of selection (Hamilton
1964; Leigh 1991; Keller 1999; Lehmann and Keller 2006).
Researchers of social insects (Bourke and Franks 1995;
Ratnieks et al. 2006), vertebrates (Hatchwell and Komdeur
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2000; Griffin and West 2003), and, increasingly, microbes
(Crespi 2001; Foster et al. 2007; West et al. 2006, 2007;
Nadell et al. 2009) have made great bounds in our un-
derstanding of cooperation, repeatedly finding evidence
for conflict-resolution mechanisms such as kin selection
and enforcement. The other tradition focuses on organi-
zation and asks how social groups, which contain many
distinct individuals, are able to produce higher-level struc-
tures and patterns (Anderson and Franks 2001; Beshers
and Fewell 2001; Kaitala et al. 2001; Theraulaz et al. 2003;
Sumpter 2006; Couzin 2007). This tradition reveals how
sophisticated group properties emerge from simple low-
level behaviors, including the organization of insect for-
aging trails and societies (Detrain et al. 1999; Theraulaz
et al. 2002, 2003; Couzin 2007), herding and shoaling in
vertebrates (Couzin et al. 2005), and multicellular devel-
opment (Salazar-Ciudad and Jernvall 2002; Jiang et al.
2004; Chu et al. 2006; Maini et al. 2006; Nelson et al.
2006).

Some important links exist between conflict and co-
operation on the one hand and higher-level patterns on
the other. A series of studies have looked at social games
on grids (e.g., Hauert and Doebeli 2004; Werfel and Bar-
Yam 2004), including the famous Prisoner’s Dilemma (No-
wak and May 1992). Here, cooperators and defectors in-
teract and evolve on a lattice, often driving striking
higher-level dynamics ranging from simple patchiness to
the emergence of fractals (Nowak and May 1992). The
prediction that conflict can generate patterns finds further
support in the existence of irregular patches of different
bacterial genotypes when there is competition with toxins
known as bacteriocins (Kerr et al. 2002; Reichenbach et
al. 2007). Nevertheless, the formal links between evolu-
tionary conflict on the one hand and emergent patterning
on the other remain poorly understood.

Here we investigate the relationship between evolution-
ary conflict in social groups and higher-level patterns in
a concrete biological system: bacterial biofilms. Surface-
attached groups, known as biofilms, are central to micro-
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Figure 1: Spatial patterns in biofilms of Pseudomonas aeruginosa. Biofilms were cultivated on glass coverslips submerged in inoculated liquid medium.
A, Coverslips were removed after 24 h to reveal a robust biofilm. B, Fluorescent microscopy of yellow fluorescent protein–labeled biofilm shows
cells in spatial patterns with holes, labyrinths, and wormlike shapes. C, Continuous variation of spatial patterns across the surface of the coverslip
is produced by the systematic variation of nutrient concentration. This image is a montage of four contiguous phase-contrast microscopy images.

bial life and have implications for many human activities
(Kolter and Greenberg 2006), including persistent infec-
tions and antibiotic resistance (Costerton et al. 1999). It
has recently been realized that one must consider processes
at multiple scales of interaction to understand biofilm evo-
lution (Kreft 2004; West et al. 2006; Xavier and Foster
2007; Nadell et al. 2008). In addition, and like so many
social groups, biofilms display high-level patterns and
structures, such as mushroom shapes (Klausen et al.
2003b), as well as regular patterns (Thar and Kuhl 2005),
which have been implicated in resistance to antimicrobials
(Davies et al. 1998) and nutrient influx (Costerton et al.
1994). However, the relationship, if any, between such pat-
terns and the evolution of cooperation in biofilms remains
unclear.

Results and Discussion

Our goal is to develop an explicit and mechanistic model
that formalizes the links between emergent pattern for-
mation and the evolution of cooperation and conflict. For
realism and clarity, we based our model on a simple ex-
perimental system from our laboratory: early biofilm de-
velopment in Pseudomonas aeruginosa biofilms. However,

the model should be broadly applicable to populations of
cells growing on a surface.

Empirical Basis for the Model

We observed pattern formation in biofilms in a simple
assay, using a glass coverslip (25 mm # 25 mm; VWR,
Pittsburgh, PA) placed in a tilted position in liquid me-
dium inoculated with a low density of P. aeruginosa cells
(2.5 mL of Triptone broth inoculated with cells at an op-
tical density of 0.0025 in six-well plates; BD, Franklin
Lakes, NJ). This setup was incubated for 24 h at room
temperature in the absence of any agitation. The coverslip
was then extracted and a dense band of biofilm was visible
to the naked eye parallel to the air-water interface (fig.
1A). Microscopy revealed regular spatial patterns on the
regions located on both the upper and lower edges of the
band. Cells growing attached to the glass surface experi-
ence a nutrient concentration that systematically varies
with depth; this produced a sparseness of patches that
increases for locations away from the center of biofilm
band. The biofilm structure also displayed a progression
of regular shapes over hundreds of micrometers that shifts
through hole, labyrinth, and spot patterns (fig. 1B). This
progression of patterns within a single coverslip experi-



Social Evolution of Biofilm Patterns 3

ment is visible from a wider field of view, as observed in
a montage of lower-magnification images (fig. 1C).

Mathematical Model Formulation

Turing provided a mathematical formulation to explain
how biological spatial patterns reminiscent of those we
observe in our biofilms can emerge from simple dynamics
(Turing 1952). Turing considered a system of two chemical
species with different diffusivities that react with each
other, and he found that under some conditions, the sys-
tem’s fixed points—states that are linearly stable when
spatial structure is neglected—become unstable to spatially
heterogeneous perturbations. These so called “Turing in-
stabilities” lead an initially homogeneous system to spatial
structure. Similar mechanisms, Turing hoped, would pro-
vide a general mathematical foundation of biological or-
ganization (Allaerts 2003). As we describe below, Turing
instabilities per se cannot explain the patterns we observe
in our experiments. Our system is stable against the struc-
tural instabilities required to lead a system to patterns in
Turing analysis. Nevertheless, we can explain the observed
biofilm patterns by a mechanism that, like Turing’s, has
two components. However, only one is a diffusible species;
the other is the cell population.

We describe cell-growth kinetics with the expression

�X S
p m X � mX. (1)

�t S � K

The first term on the right-hand side represents growth
of X (biomass concentration at the surface) following Mo-
nod kinetics (Monod 1949), where m is the maximum
specific growth rate of bacteria, S is the concentration of
growth-limiting nutrient, and K is the half-saturation con-
stant. The second term is commonly used to represent all
losses in biomass, including decay or cell-maintenance
costs (Sinclair and Topivvala 1970). The concentration of
nutrient at the surface is governed by

�S m S
p Q(S � S) � X, (2)0

�t Y S � K

where S0 is the concentration of nutrient in the liquid
above the surface, Q is the rate of mass transfer between
liquid and surface, and Y is the yield of nutrient to biomass.
Nutrient influx into the biofilm is driven by the concen-
tration difference between bulk liquid and surface. Anal-
ysis of this system (detailed in the appendix in the online
edition of the American Naturalist) reveals a single stable
fixed point, here written in dimensionless form as

f∗s p k ,
1 � f

∗1 � s∗x p , (3)
2f f

where and , and asterisks denote that thes p S/S x p X/r0

value is at the fixed point. The parameter r represents the
maximum concentration of biomass at the surface. Equa-
tion (3) reveals that to know the steady state of the system
(s∗, x∗), one needs only three dimensionless parameters:

, , and the Thiele modulus, 2k p K/S f p m/m f p0

, a group that quantifies the balance between con-mr/YQS0

sumption and transport of the nutrient. The existence of
a single stable fixed point for any condition described by
k, f, and f2 explains that the biofilm will grow until its
biomass reaches a steady state concentration. The next step
is to determine whether that steady state has any spatial
structure.

We first applied a traditional Turing instability analysis
to our model whereby we assumed that cells and nutrient
both spread on the surface by diffusion. However, contrary
to the system originally analyzed by Turing (1952), our
system is linearly stable against any spatial perturbations:
no spatial patterns are predicted from Turing’s analysis.
Our analysis followed the formulation proposed by Mur-
ray (2004); it is detailed in the appendix.

An alternative way to model cell spreading on a surface
was proposed by Dockery and Klapper (2001). A central
assumption of their model is that the biofilm occupies
space in patches of constant density, r. This is a reasonable
assumption here, since the coverslip surface is in fact cov-
ered by cell patches of equal density (fig. 1B). Formally,
Dockery and Klapper (2001) assumed that bacteria spread
according to Darcy’s law, whereby cell growth and division
increase mechanical pressure locally according to

1 �X
2�l∇ P p . (4)

X �t

Pressure causes expansion of the biofilm front with velocity

��v p �l∇P, (5)

where l is Darcy’s constant for the biofilm and is equal
to , as set by equation (1). Growth is a function of�X/�t
the local nutrient concentration, which in turn is deter-
mined by the partial-differential equation

�S m S
2p Q(S � S) � X � D∇ S, (6)0

�t Y S � K

where D is the diffusivity of the nutrient. Dockery and
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Figure 2: Details on the two-dimensional simulations. A, Any given spatial distribution of cells (surface occupied by cells is black) causes small
heterogeneities in nutrient concentration (B). The growth rate of any cell within the biofilm then becomes a function of the local nutrient that cell
is experiencing. The population spreads by growing only in regions where this concentration is enough to overcome maintenance requirements.
The isoconcentration line (red) represents the nutrient limit computed from s∗, g L�1 in this case. C, Cumulative effect of small differences�44.54 # 10
in growth rate generates uneven pressure. The velocity at which the population front advances (blue arrows in D) is determined from the gradient
of the pressure. Computational domains in A–C represent an area of mm2 (D is a detail from C).100 # 100

Klapper (2001) showed through linear analysis how the
advancing front of a biofilm can develop fingering insta-
bilities. This fingering process is essential in our case, since
it is the symmetry-breaking event that causes the distortion
of initially round colonies.

How the Patterns Emerge from
Competition for Nutrients

We pursued our analysis computationally to determine the
spatial structures of the steady state, using the formulation
introduced by Dockery and Klapper (2001). The model
describes populations of cells as occupying the surface in
patches with a constant cell density r. Instead of assuming
that cells travel along the surface through diffusion, the
model calculates the pressure generated by cell growth and
division. This means using the following set of partial-
differential equations:

m S
20 p Q(S � S) � X � D∇ S,0 Y S � K

1 �X
2�l∇ P p , (7)

X �t

��u p �l∇p.

Note that the first equation describes nutrients at a steady
state of reaction-diffusion. This derives from the assump-
tion commonly used in biofilm models that reaction-
diffusion is much faster than cell growth and division (Xa-
vier et al. 2005). The second and third equations use Darcy
flow to describe dynamics of the cell population. The
model is made dimensionless, producing the equations

s
2 2∇ S � f x � (1 � s) p 0, (8)

s � k

s
2�∇ p p � f, (9)

s � k

��u p �l∇p, (10)

where s, , and are the dimension-1/2p p Pl/D u p v/(QD)
less forms of nutrient concentration (S), pressure (P), and
velocity ( ), respectively. We solved this model numerically�v
(Dockery and Klapper 2001) on an orthogonal grid with

grid nodes and cyclic border conditions. The129 # 129
solver was implemented in Java and used an iterative cycle
with the following operations:

1. For a given biomass distribution (fig. 2A), solve the
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Figure 3: Mathematical modeling explains nutrient-dependent biofilm patterns. Patches occupied by cells are represented in black, whereas white
represents empty surface locations. A, Time series from a simulation shows emergence of patterns, starting from the inoculum until steady state.
B, Patterns at steady state for varying nutrient concentration (S0). C, Amount of biomass at steady state (x∗) depends on S0; solid line represents
analytical solution (eq. [3]), crosses represent two-dimensional simulations, dashed line at represents limit at which two-dimensional∗x p 1
simulations predict complete surface occupation. D, Scale of patterns is set by , which has dimensions of length.1/2(D/Q)

nutrient equation to steady state using the full-approxi-
mation storage multigrid method (Press et al. 1997).

2. With the nutrient concentrations (fig. 2B), solve the
equation for pressure, again using the multigrid solver.

3. Using the pressure obtained (fig. 2C), determine ve-
locity vectors by computing the gradient of the pressure.

4. Use velocities (fig. 2D) to advance the biomass front
using a level set function (Osher and Fedkiw 2003).

5. Advance time and return to operation (1) with the
updated biomass distribution.

We started simulations from an initial state that rep-
resented a surface originally inoculated with individual
cells, placed at random locations, that together occupied
1% of the surface (fig. 3A). In a typical simulation, at the

beginning, the inoculation sites develop into circular col-
onies by spreading outward. As the population grows, the
nutrient concentration at the surface decreases so that it
no longer sustains fast growth, and the advancement of
these colonies begins to slow. Growth becomes hetero-
geneous in space, causing the circular patches to deform
due to fingering. The system stabilizes into its final spatial
structure when biomass at the surface is such that the
nutrient influx is only enough to satisfy the biomass main-
tenance requirements. At the end, these simulations reveal
the striking structural patterns observed in our biofilm
experiments (fig. 3B).

We then performed the simulations at various parameter
values and observed that the amount of biomass at steady
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state matches that calculated by the spatially homogenous
model (comparison in fig. 3C). These calculations show
that equation (4) is still valid to describe the steady state
even in the presence of spatial structure. Importantly, it
reveals that nutrient availability can explain the changing
density of patterns observed (fig. 1C).

These simulations also make the interesting prediction
that the scale of the patterns is not defined by the amount
of biomass at steady state. Rather, the length scale of pat-
terns is set by , the square root ratio of nu-1/2h p (D/Q)
trient diffusivity and its external mass transfer. This pre-
diction means that, all else being equal, changes in h will
change the size of the patterns without affecting total bio-
mass productivity, an effect that resembles zooming in on
the patterns (fig. 3D).

Empirical Support for the Model

The observed patterns and their progressions (fig. 1C) are
consistent with the effects of nutrient conditions: the bio-
film band is denser at an intermediate distance of the air-
water interface, where conditions are most likely to be
optimal due to intersecting gradients of oxygen and lim-
iting nutrients in the liquid medium. In addition, we per-
formed experiments that altered the inclination of the cov-
erslip in the media. The results showed that the width of
the band decreased with the tilting angle (fig. 4A). This is
consistent with the role of nutrient gradients along the
depth of the liquid in generating the pattern progression
shown in figure 1C. In addition to nutrient effects, another
key factor for pattern formation in our model is that there
is limited surface motility beyond that caused by cells
pushing one another as they grow and divide. Experiments
with four fluorescently labeled constructs of the same
strain reveal significant clustering by color (fig. 4B–4G),
which again is consistent with the assumptions of the
model. Another test of our model would be to examine
the predicted scaling law (fig. 3D); however, this requires
manipulating either the diffusivity of the growth-limiting
substrate or its external mass transfer, neither of which we
can do in our experimental system. Nevertheless, general
support of the scaling prediction comes from the obser-
vation of similar patterns at the millimeter scale in marine
biofilms (Thar and Kuhl 2005) and at the meter scale in
arid vegetation (Rietkerk et al. 2004).

Can we expect the observed patterns to be general to
all biofilms, or do they instead require specific conditions
such as our tilted-coverslip assay? Our model predicts that
we should observe patterns in any other biofilm system
where surface occupation is not total and where there is
sufficiently limited movement by cells. What makes our
empirical system uniquely suited is that, by providing a
gradient of nutrients along the tilted coverslip surface, we

ensure that there are always some locations where con-
ditions are suitable for pattern formation.

Patterns Emerge from a Combination of Nutrient
Limitation and Mechanical Pushing

Pattern formation in biofilms can be understood in terms
of two key processes. First, cells exert a negative influence
on each other by lowering local nutrient concentration.
The scale of this interaction is set by the properties of
nutrient transport, and its strength is set by the properties
of nutrient consumption. At the same time, cell growth
and division produce mechanical pressure, causing the col-
onies to spread. This is an interaction among neighbors
that acts at a range closer than that of nutrient conflict.
In the end, the frequency of the spatial patterns increases
to levels such that it becomes effectively homogeneous at
the length scale set by nutrient diffusion.

The two processes behind pattern formation can also
be characterized as opposing social effects. Whereas nu-
trient consumption is a competitive interaction, mechan-
ical pushing is cooperative. Cells can benefit from receiving
a push as they increase their growth rate by traveling up
the gradients of nutrient concentration, as we analyzed
previously (Xavier and Foster 2007). A key finding of our
analysis is that the patterns in our system arise from the
very same processes that were central to the evolution of
cooperation and conflict in our previous models of bio-
films: regional competition for nutrients and cooperative
pushing of cells into nutrient-rich regions.

Cooperation, Conflict, and Pattern Formation

The conclusion that a single set of processes—nutrient
limitation and pushing—both drives natural selection and
generates emergent spatial patterns in biofilms leads to at
least two interesting corollaries. First, it suggests that the
scale of patterns observed in nature can be used to infer
the evolutionarily relevant scales of competition within
groups of unrelated social organisms (an observation that
we leave open for now). A second corollary, and our focus
here, is that an evolutionary response to the mechanisms
that cause patterns has the potential itself to affect pat-
terning. We therefore evaluated the potential for an in-
teraction between evolutionary conflict and pattern for-
mation among strains with different spreading strategies
and under different social conditions.

We proceed here with theoretical approaches, as em-
pirical approaches proved to be intractable. Specifically, we
performed preliminary experiments to search for mutants
with different levels of surface motility that could be used
to study competition. These included several mutants in
flagella and pili genes that affect the structure of P. aeru-
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Figure 4: A, Tilting assay confirms that biofilm width decreases with increased coverslip inclination. Blue crosses represent data from independent
experiments, and the red line shows the best linear fit to the sine of the tilting angle. B, C, Biofilms composed of Pseudomonas aeruginosa strains
labeled with cyan fluorescent protein, yellow fluorescent protein, green fluorescent protein, and DsRedExpress were imaged (four color channels
overlaid in B; detail in C) and processed computationally to obtain coordinates of individual cells. D–G, Cells are located next to neighbors of the
same color more than would be expected by random positioning using a weighted measurement defined as . Here, in p (N /N ) # (N /N )ij ij i T j

represents the color of a focal cell, and j is the color of its nearest neighbor. Nij is the number of cells of color i whose nearest neighbor has color
j, Ni is the total number of cells of color i, and NT is the total number of cells in the image analyzed.

ginosa biofilms in flow cells for pattern formation (Klausen
et al. 2003a). However, none of the mutants tested were
capable of producing biofilms in our coverslip setup. We
also tested mutants that overproduce extracellular slime
(mucoid variants) under some conditions, because we hy-
pothesized that slime production may result in increased
spreading on the surface. However, like the wild type, these
mutants do not appear to produce significant levels of
polymer under our assay conditions, and they made pat-
terns that were no different from those of the wild type
(not shown).

We therefore focus on simulations, with the goal of
establishing a formal theoretical link between the evolution
of competition and pattern formation. To allow generality
of the spreading mechanism, we considered different val-
ues of the maximum cell density for each strain as a proxy
for cell spreading. A decrease in cell density might be
achieved by polymer secretion, as in the vertical-slice sim-
ulation of Xavier and Foster (2007), where bacterial cell
separation in biofilms is mediated by the extracellular
polymers. However, it could also represent increased mo-
tility and movement across the surface, as long as patches
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of different strains maintain a low level of mixing. In our
model, then, a strain with lower density spreads across the
surface more for the same number of cell divisions, all
else being equal.

Among-Group Competition. We first consider the case of
groups that are formed from a single cell or from cells of
identical genotype, so that all evolutionary competition is
among groups (we also assume no mutation; West et al.
2006). In this case, groups are formed by either a non-
spreader strain or a spreader strain. Central to our analysis
is that spreading carries a finite metabolic cost. This is
biologically realistic for bacteria in the cases of both poly-
mer excretion (Klausen et al. 2003b) and motility (Harshey
2003). In our model, two strains that differ in spreading
ability, a fast spreader (F) and a slow spreader (S), will
differ in cell density per surface area such that . Ifr ! rF S

we assume, as previously, that kinetics of nutrient uptake
per biomass is maintained (Xavier and Foster 2007), then
the cost of spreading is the result of a lower yield of bio-
mass produced per mass of nutrient consumed, that is,

. Consequently, the maximum specific growth rateY ! YF S

of the fast spreaders is lower than that of slow spreaders
and is expressed as

YF
m p m . (11)F SYS

When nutrients are plentiful, growth is exponential and
the competition is won by the strain with the highest max-
imum specific growth rate. In these conditions, spatial
structure has no effect, and therefore slow spreaders out-
grow fast spreaders.

When nutrients are growth limiting, spatial structure
becomes important. However, in the case where compe-
tition is among biofilms, the outcome of each competition
is determined by the amount of biomass produced sep-
arately by each type. That amount is given by x∗ in equa-
tion (3); this allows the evolutionary dynamics to be fol-
lowed analytically. The number of cells of each strain at
the end of each competition is

∗X Q[(S � {K/[(m /m) � 1]})/(m/Y )] YF 0 F F Fp ≈ . (12)∗X Q[S {K/[(m /m) � 1]}/(m/Y )] YS 0 S S S

The frequency of fast spreaders in the total population
after one competition ( ) is a function of its frequency′w
before that competition ( ) as follows:w

1′w p . (13)
1 � [(1 � w)/w](Y /Y )S F

Recalling that , equation (13) states that the pro-Y ! YF S

portion of the fast strain in the population always decreases
( for any ) and that successive rounds of com-′w ! w w
petition lead to its extinction. This is shown in figure 5A.
In conclusion, if competition is among biofilms, the slower
spreader always wins against the faster one, and consec-
utive rounds of competition always result in extinction of
the faster spreader.

Within-Group Competition. What happens if multiple ge-
notypes colonize each surface so that strains meet each
other within each group? In the absence of nutrient lim-
itation, that is, in conditions for which patterns do not
form, slower spreaders still prevail. This happens because
the competition is set purely by differences in growth rate
(eq. [11]). When strains mix under diffusion limitation,
however, the interaction becomes more complex and re-
quires simulation. We therefore extended our framework
to analyze the effect of mixing strains. Two-strain com-
petitions were implemented by extending the model to
include multiple species (Alpkvist and Klapper 2007).

We considered the opposite extreme to the single-strain
case, in which each surface is seeded by many strains that
are randomly sampled from the population so that average
genetic relatedness within each group is close to 0 (Gilbert
et al. 2007). In this case, the frequency of the fast-spreader
genotype is then identical in each competition (equal to
the population mean), and the evolutionary outcome is
determined solely by competition within each group (West
et al. 2006). Figure 5B shows the result for a specific case
( and ). These results show thatY /Y p 0.67 r /r p 0.5F S F S

within-group competition can have outcomes that are op-
posite those of the low-mixing case (among-groups com-
petition). Fast spreaders are now capable of invading from
any initial frequency, in spite of spreading costs. Accom-
panying that invasion is a strong decrease in total group
productivity (fig. 5C).

The plot shown in figure 5B–5C is a specific realization
for the parameters and that hasY /Y p 0.67 r /r p 0.5F S F S

been chosen for illustration. We can, however, generalize
these conclusions beyond these parameters. We first define
the cost of spreading (c) as the ratio of the density (a
parameter inversely related to spreading) and the yield
(inversely related to the cost):

r
c p . (14)

Y

For the fast strain to spread more than the slow strain,
their costs must fulfill

c ! c . (15)F S

If this were not the case, the cost of spreading more would
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Figure 5: Evolutionary analysis, where w represents the proportion of spreaders in the population before a competition, and w ′ represents the same
proportion at its end. Within-group conflict can lead to evolution of spreading, disrupting patterns. A, When competition is among groups (low
mixing, clonal groups), successive competition rounds (arrows) lead to the extinction of spreaders because, due to the cost of spreading, they are
less productive. B, When competition is within group (high mixing, zero relatedness), the system is no longer analytically tractable, so we applied
simulations. Here, the outcome is reversed: spreaders invade (arrows) in spite of the cost of spreading. However, invasion results in a decrease in
the total group productivity (C), because resources are spent in costly spreading. D, Evolutionary dynamics in conditions of nutrient limitation and
high mixing (within-group competition). Simulations for a range of costs show that fast spreaders win over slow spreaders, in spite of the cost of
spreading and the existence of an equilibrium between and (blue: and ; green: and ; orange:c p 754 c p 565 c p 424 c p 318 c p 565 c p 424F S F S F S

and ). Selection of fast spreaders in conditions of nutrient limitation and high mixing leads to the disruption of patterns. Steadyc p 754 c p 565F S

states from competitions started at , with and (E), and (F), and and (G). In eachw p 0.50 c p 424 c p 318 c p 565 c p 424 c p 754 c p 565F S F S F S

panel, the faster spreader is represented in red and the slower spreader is represented in gray. H, Summary of evolutionary outcome: an interaction
between low nutrients and strain mixing (low genetic relatedness) selects for strains that spread (red) and do not make patterns (bottom left quadrant)
and reduces biofilm productivity in an evolutionary tragedy of the commons. Pattern-forming strains (nonspreaders) evolve in all other cases,
although pattern formation occurs only under nutrient limitation.

be higher than the benefit of obtaining extra nutrients.
When equation (15) is satisfied, however, we observe from
simulation that our conclusion is indeed general: fast
spreaders always invade, irrespective of the cost (fig. 5D).
As a note, our simulations are capable of following this
evolution only up to the point that the strain covers the

surface completely and our simulations can no longer pre-
dict spreading advantages. Simulations with these evolved
fast spreaders show no patterns.

In addition, further competitions show that strains with
progressively more spreading can invade strains with lower
spreading capabilities. This leads to a loss of pattern for-
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mation (fig. 5E–5G). Coupled with the loss of patterns,
the rise of spreaders results in a reduced group productivity
when compared with the ancestral, slower-spreading strain
(fig. 5C), which had previously succeeded in among-group
competitions. With mixing, strains that spread better gain
a selfish benefit but spend a shared resource (the nutrient).
In doing so, they reduce total group productivity, leading
to more resource spending and even lower productivities.
This situation is akin to an evolutionary tragedy of the
commons, a scenario that frequently arises when multiple
users exploit the same resource (Hardin 1968; Kerr et al.
2006; Rankin et al. 2007).

Conclusions

Scale-dependent competition is central to both the study
of social conflicts, where it defines the potential for useful
cooperation among relatives (Wilson et al. 1992; Queller
1994; Perrin and Lehmann 2001; West et al. 2002; Gardner
and West 2004), and self-organization, where a mix of
positive and negative feedback can cause the emergence
of higher-level patterns (Turing 1952; Salazar-Ciudad and
Jernvall 2002; Theraulaz et al. 2002, 2003; Jiang et al. 2004;
Rietkerk et al. 2004; van de Koppel et al. 2005; Chu et al.
2006; Maini et al. 2006; Sumpter 2006). Our study suggests
that this association can be more than superficial. We saw
that the very same scale-dependent interactions—nutrient
competition and mechanical pushing—that drive the oc-
currence of spatial patterns can also generate natural se-
lection for competition among strains. In simulations con-
taining many unrelated strains, we find that natural
selection favors spreading strategies that allow strains to
compete within groups (fig. 5H). This finding agrees with
those of our previous studies, that increased bacterial cell
spreading by polymer secretion can be favored in biofilms
in spite of its cost (Xavier and Foster 2007). Moreover,
we show here that such costly strategies can simultaneously
disrupt higher-order structure. In addition to the energetic
costs of spreading that we analyzed here, conflict may incur
additional costs: a loss of structure in biofilms has been
found to correlate with increased susceptibility to anti-
biotics (Davies et al. 1998; Stewart and Costerton 2001).

To conclude, we provide a formal link between higher-
level patterning and the potential for evolutionary conflict
in social systems by showing that both can arise from a
single set of scale-dependent processes. This close asso-
ciation, however, is an antagonistic one: we also find that
the expression of conflict will disrupt the very patterns
that might otherwise indicate its nature. A close analogy
can be found in multicellular development. Nelson et al.
(2006) showed that branching patterns during mammary
development result from the combination of mechanical
pushing by cells and growth arrest induced by secreted

inhibitory morphogens. Analogous to our spreader strat-
egy, this development can be disrupted by cancerous cells
that ignore the inhibitory signal and overgrow the non-
cancerous cells, resulting in unstructured tissue. In con-
trast, the emergence of fractal patterns in the lattice sim-
ulations of Nowak and May (1992) requires an interplay
between both defector and cooperator strategies; a lattice
of only cooperators would presumably lack structure. The
key difference between these lattice models and our own,
therefore, is that in our system—as in multicellular de-
velopment—cooperators produce patterns when alone. It
is these cooperative patterns that are susceptible to dis-
ruption by the evolution of defectors. However, the po-
tential for secondary patterns to then emerge from the
interaction of cooperators and defectors (Nowak and May
1992) suggests that the relationship between conflict and
patterns is a nontrivial one.
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