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Appendix from J. B. Xavier et al., “Social Evolution of Spatial Patterns
in Bacterial Biofilms: When Conflict Drives Disorder”
(Am. Nat., vol. 174, no. 1, p. 1)

Stability Analysis for the Single-Species Model
Finding Stable Fixed Points by Linear Analysis

Our model is based on the system of ordinary differential equations

�S m S
p Q(S � S) � X,0

�t Y S � K

�X S
p m X � mX. (A1)

�t S � K

The system was made dimensionless by normalizing time by and length by . The resulting system of1/21/Q (D/Q)
dimensionless equations is

s2ṡ p g(s, x), where g(s, x) p (1 � s) � f x,
s � k

s
ẋ p q(s, x), where q(s, x) p g � f x. (A2)( )s � k

The dimensionless parameters k, f, and f2 were defined in the main text, and . Note that the equationsg p m/Q
are written for dimensionless concentration of nutrient, , and dimensionless biomass, .s p S/S x p X/r0

The system has two fixed points, which are determined by solving and . The first∗ ∗ ∗ ∗g(s , x ) p 0 q(s , x ) p 0
fixed point is a trivial steady state where and . The second fixed point, here called the nontrivial∗ ∗s p 1 x p 0
steady state, is

f∗s p k ,
1 � f

∗1 � s∗x p . (A3)2f f

Stability is determined by linearizing equation (A2) at each fixed point and evaluating the solution of the
linearized system. That solution has the form

ltW(t) ∝ e , (A4)

where W represents the matrix of small variations about a fixed point , whereẆ p AW
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∗s � s
W p ,∗( )x � x

�q/�s �q/�x
A p . (A5)( )�g/�s �g/�x

Matrix A is the Jacobian and is evaluated at the fixed point (s∗, x∗). Equation (A5) is an eigenvalue problem, and
its solution is obtained from solving

det (A � lI) p 0, (A6)

where I is the identity matrix. The stability of the fixed points is then evaluated as follows: a fixed point is
stable if values of l are negative and unstable if any value of l is greater than 0. Determining l produces the
quadratic equation with the form

2l � tl � D p 0, (A7)

and the solution is best assessed through the values of and . The conditions that ensuret p tr(A) D p det (A)
stability are and . For the steady state , these conditions are, respectively,∗ ∗t ! 0 D 1 0 (s , b ) p (1, 0)

1 � f � fk
g ! 1, (A8)

1 � k

and

1 � f � fk
g ! 0. (A9)

1 � k

For the nontrivial steady state, the same conditions become, respectively,

(1 � f � fk)(1 � f )
1 0, (A10)

kf

and

(1 � f � fk)(1 � f )
g 1 0. (A11)

kf

The nontrivial steady state is not possible when the nutrient concentration necessary for is . This is∗ ∗x ≥ 0 s ≥ 1
equivalent to

f∗s p k ≥ 1⇔1 � f � fk ≤ 0. (A12)
1 � f

Under such conditions, only the steady state is possible. When the system is within the range in∗ ∗(s , x ) p (1, 0)
equation (A12), the conditions for stability are valid for the fixed point (1, 0). When the nontrivial steady state is
also possible (i.e., when we are outside the range in eq. [A12]), we have and condition (A9) no1 � f � fk 1 0
longer holds. Therefore, the trivial steady state is unstable under those conditions, which means that the system
will move away from that state. On the other hand, conditions (A10) and (A11) are fulfilled. Hence, the
nontrivial steady state is stable (fig. A1). In summary, the linear analysis concludes that the stable fixed points
are
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f
(1, 0) if k ≥ 1

1 � f
∗ ∗(s , x ) p . (A13)

f 1 � k[ f/(1 � f )] f{ k , if k ! 12( )1 � f f f 1 � f

Turing Instability Analysis

Next, we perform analysis of Turing instabilities and show that there are no biologically relevant conditions
under which these fixed points become unstable to spatial perturbations. This means that no true Turing
instabilities (Turing 1952) exist. For simplicity, we refer to the analysis outlined by Murray (2004).

To make our model amenable to Turing instability analysis, we first assume that both nutrients and cells can
spread on the surface by diffusion processes. With this assumption, system (A1) becomes

�S m S 2p Q(S � S) � X � D∇ S,0
�t Y S � K

�X S 2p m X � mX � D ∇ X, (A14)X
�t S � K

where DX is the diffusivity of cells. The nondimensional form of equation (A14) is

2ṡ p g(s, x) � ∇ s,

2ẋ p q(s, x) � b∇ x, (A15)

where .b p D /DX

The analysis of Turing instabilities follows through a series of derivations that we skip here. The reader may
refer to Murray (2004) for a step-by-step derivation. The following conditions must be met for a steady state (s∗,
x∗) to be a Turing instability:

�q �g
b � 1 0, (A16)

�s �x

2

�q �g �q �g �q �g
b � � 4b � 1 0. (A17)( ) ( )�s �x �s �x �x �s

Again, partial derivatives are evaluated at the steady state.
Next, we show that conditions (A16) and (A17) are never fulfilled for biologically relevant parameter ranges.

For the fixed point (1, 0), condition (A16) becomes

1 � f � fk
g ! b, (A18)

1 � k

which is in disagreement with condition (A9), since b 1 0. For the nontrivial steady state, condition (A16) is

(1 � f � fk)(1 � f )
b ! 0. (A19)

kf

Conditions (A10) and (A19) are mutually exclusive because b 1 0. Therefore, we conclude that the fixed point is
not unstable in the strict sense of Turing instabilities.
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Figure A1: Fixed points and isoclines for the system within the range in condition (A12). Red lines are the
isoclines , and the blue line is the isocline . The fixed point , represented by∗ ∗�x/dt p 0 �s/dt p 0 (s , x ) p (1, 0)
an open circle, is unstable, as evaluated by the linear stability analysis. The nontrivial fixed point (filled circle) is
stable. Arrows represent trends of system dynamics within the regions delimited by isoclines, as evaluated by

.�s/dx


