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Abstract

On its own, a single cell cannot exert more than a microscopic influence on its immediate surroundings. However, via
strength in numbers and the expression of cooperative phenotypes, such cells can enormously impact their environments.
Simple cooperative phenotypes appear to abound in the microbial world, but explaining their evolution is challenging
because they are often subject to exploitation by rapidly growing, non-cooperative cell lines. Population spatial structure
may be critical for this problem because it influences the extent of interaction between cooperative and non-cooperative
individuals. It is difficult for cooperative cells to succeed in competition if they become mixed with non-cooperative cells,
which can exploit the public good without themselves paying a cost. However, if cooperative cells are segregated in space
and preferentially interact with each other, they may prevail. Here we use a multi-agent computational model to study the
origin of spatial structure within growing cell groups. Our simulations reveal that the spatial distribution of genetic lineages
within these groups is linked to a small number of physical and biological parameters, including cell growth rate, nutrient
availability, and nutrient diffusivity. Realistic changes in these parameters qualitatively alter the emergent structure of cell
groups, and thereby determine whether cells with cooperative phenotypes can locally and globally outcompete
exploitative cells. We argue that cooperative and exploitative cell lineages will spontaneously segregate in space under a
wide range of conditions and, therefore, that cellular cooperation may evolve more readily than naively expected.
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Introduction

Many cell phenotypes alter the growth and division of nearby

cells by changing local resource availability [1–4]. Some of these

phenotypes promote the survival and reproduction of others, and

thus qualify as a simple form of cooperation. A cell may be

considered cooperative, for example, if it secretes enzymes that

free nutrients which neighboring cells can use. The efficiency with

which a cell group processes environmental resources or exploits a

host often depends on such publicly beneficial cell phenotypes. For

instance, many microbial infections and cancerous tumors derive

their pathogenicity in part from the cooperative secretion of

digestive enzymes by their constituent cells [5–8].

How cooperative cell phenotypes evolve therefore presents an

important question, one that is particularly challenging because

any genetic variants that exploit others’ cooperation – without

themselves paying a cost – can potentially invade and increase in

frequency. In light of this problem, social evolution theory has

been developed to understand the evolutionary trajectories of

cooperative traits [9], but this framework has only recently been

applied to unicellular systems [4,10–12]. The critical prediction is

that preferential interaction among genetically related individuals

increases the propensity for cooperative phenotypes to evolve.

Variation among individual cells is a common feature of many

cell groups: microbial biofilms are often composed of multiple

strains or species [13,14], and cancerous tumors can consist of

many different genetic lineages [15,16]. The majority of work

on cooperative cell phenotypes assumes relatively well mixed

interactions among different genetic variants in standing or shaken

liquid culture [17–21]. This kind of environment does not reflect

the natural condition of most cell groups, in which cells are

typically constrained in space and influence each other in a

distance-dependent manner. These spatial relationships may be

paramount to understanding the evolution of cellular cooperation

[22]. When different cell lineages are segregated in space, those

expressing cooperative phenotypes are more likely to benefit

others of their own kind [23–25]. When different cell lineages are

mixed together, on the other hand, cells that exploit the resources

of others can thrive [17–20].

Local populations of bacterial and cancer cells are often

established by groups of progenitors that proliferate into larger

clusters. Experiments with bacterial colonies on agar have revealed

that expanding cell groups can segregate into sectors that are each

dominated by a single genetic lineage [26,27]. This observation

has been used predominantly to motivate new population genetic

models [28–30]. When only cells on the periphery of an expanding
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group can access nutrients and reproduce, the group’s effective

population size is reduced. As a result, neutral or even mildly

deleterious alleles can spread by genetic drift along the advancing

front. Because they are constrained in space, genetic lineages that

manage to proliferate along the population’s leading edge become

physically separated into zones composed of clonal or closely

related individuals.

By promoting interaction between individuals of the same

genotype, the spontaneous segregation of different genetic lineages

in space may also influence social evolution within cell groups

[23,24]. In the present paper, we use a generalized mechanistic

model to define the physical and biological factors that govern cell

group spatial structure, and we explore the potential connection

between genetic drift along the fronts of expanding cell groups and

the evolution of social phenotypes.

Results/Discussion

To study how the collective structure of cell groups arises from

the activity of many individual cells, we used a computational

model that employs mechanistic descriptions of solute diffusion

and cell growth [31–33]. Our framework is derived from the

latest generation of agent-based models that have been developed

over the last decade using biochemical engineering principles

(Methods, Supporting Information, Table S1). The model’s

underlying assumptions are described and justified in detail

elsewhere [33–36], and empirical tests have demonstrated the

framework’s ability to make accurate predictions for real

biological systems [37,38].

Briefly, each cell is implemented as a circular agent in explicit

two-dimensional space, and each simulation is set on one of two

possible conditions. The first consists of cells growing on a flat

surface with growth substrate (nutrients) diffusing from above. The

second condition represents a cell cluster immersed in a resource

pool, such that substrate diffuses into the cluster from all

directions. The transport of all solutes occurs exclusively through

diffusion. Each cell grows according to a Michaelis-Menten

function of substrate concentration in its local environment and

divides once it reaches a maximum radius (Methods, Supporting

Information, Table S2). Cells move passively due to the forces

exerted between neighboring individuals as they grow and divide.

Growth substrate availability and cell lineage segregation
We began with simulations in which the environment

surrounding cell groups was altered by increasing or decreasing

growth substrate concentration. These in silico experiments were

initiated with equal numbers of randomly distributed red and blue

cells, which did not differ in any way other than their color. The

two neutral color markers were used to judge whether cell lineages

remain randomly mixed or become spatially segregated as cell

groups expand. Environmental substrate availability was de-

creased from saturating to sparse across multiple simulations,

and we observed three different regimes in cell group structure:

1. Well mixed with smooth front. When growth substrate

was supplied to cell groups at saturating concentration, the red and

blue cell lines appeared to remain well mixed relative to their

random initial distributions. The advancing fronts of cell groups

were smooth (Figure 1A,D).

2. Segregation with smooth front. When substrate avail-

ability was decreased to a moderate concentration, the surfaces of

cell groups remained smooth, but their internal structures were

substantially altered. Cell lineages segregated as group fronts

advanced, creating adjacent red and blue cell sectors (Figure 1B,E).

This segregation occurred because many cell lineages were cut

off from advancing fronts and ceased growing, while the few

remaining lineages proliferated into adjoining zones containing

only one cell type.

3. Segregation with irregular front. When substrate avail-

ability was sparse, we noted another qualitative shift in cell group

structure. Red and blue cell lineages separated into adjacent

sectors, just as described above. Additionally, the advancing fronts

of cell groups became sensitive to small irregularities, which grew

into tower clusters separated by open space (Figure 1C,F). Akin to

the sector structures described above, each cell tower consisted of

only one color, and thus appeared to contain the descendents of a

single ancestral cell.

Further exploration with the simulation framework suggested

that these three structure regimes represent qualitatively different

regions within a continuum of possibilities. When we altered

substrate availability by small increments over a sufficiently

large range, we observed cell group structures that were

intermediate between those shown in Figure 1. For simplicity

and clarity in the remainder of the paper, we will focus only on

the three distinct patterns of cell group spatial structure described

above. Before proceeding, we also ruled out the possibility that

our results were an artifact of simulating cell groups in two-

dimensional space by repeating our simulations in three

dimensions, which yielded qualitatively identical results (Sup-

porting Information, Figure S1). All subsequent simulations were

performed in two dimensions using the surface growth condition

(as in Figure 1A–C).

We quantified lineage segregation in cell groups by performing

replicate simulations under the three substrate availability

conditions shown in Figure 1. At every time step of each

simulation, we identified every actively growing cell and, within

a 10 cell-length radius, measured the local frequency of other

actively growing cells of the same color (Methods). The resulting

segregation index directly measures the spatial assortment of cell

lineages and ranges from 0 to 1, where 1 denotes complete lineage

segregation on a spatial scale of 10 cell lengths. Fifty replicate

simulations of each substrate availability condition were per-

formed, and the average segregation index from each series was

visualized as a function of cell group size (Figure 2). The results

quantitatively confirm our observation that decreasing growth

substrate availability leads to stronger lineage segregation in cell

groups.

Author Summary

Cooperation is a fundamental and widespread phenome-
non in nature, yet explaining the evolution of cooperation
is difficult. Natural selection typically favors individuals that
maximize their own reproduction, so how is it that many
diverse organisms, from bacteria to humans, have evolved
to help others at a cost to themselves? Research has
shown that cooperation can most readily evolve when
cooperative individuals preferentially help each other, but
this leaves open another critical question: How do
cooperators achieve selective interaction with one anoth-
er? We focus on this question in the context of unicellular
organisms, such as bacteria, which exhibit simple forms of
cooperation that play roles in nutrient acquisition and
pathogenesis. We use a realistic simulation framework to
model large cell groups, and observe that cell lines can
spontaneously segregate from each other in space as the
group expands. Finally, we demonstrate that lineage
segregation allows cooperative cell types to preferentially
benefit each other, thereby favoring the evolution of
cooperation.

Spatial Structure and Cooperation in Cell Groups
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A general model for lineage segregation
Our next goal was to describe why environmental substrate

concentration affects lineage assortment in expanding cell groups.

Under limited growth substrate availability, the majority of cell

growth and division occurs along a group’s advancing front in an

active layer whose depth depends on substrate penetration

(Figure 3). Previous work has hinted that active layer depth is a

critical factor influencing cell group surface structure [39,40], and

we therefore hypothesized that it is not substrate concentration in

particular, but more generally the depth of a cell group’s active

layer that controls cell lineage segregation. Because segregation

increased as growth substrate supply decreased in our preliminary

simulations, we predicted that thinner active layers would lead to

stronger lineage segregation in expanding cell groups.

Active layer depth is not solely a function of bulk growth

substrate concentration. For example, higher substrate diffusivity

increases active layer depth by allowing substrate to enter further

into the cell group before being depleted. Faster cell growth rates,

on the other hand, decrease active layer depth by raising the rate

of substrate consumption at the cell group’s outer surface. If we are

correct that active layer depth is the underlying determinant of

lineage segregation, all of the physical and biological factors that

control active layer depth should also influence lineage segregation

in cell groups.

Using an analytical technique from chemical engineering

(Methods), we combined the factors that influence active layer

depth into a dimensionless number, d, which has the following

form for our system:

Figure 1. Dynamic simulations show that cell lineages segregate in a manner dependent on growth substrate availability.
Simulations began with a 1:1 mixture of red and blue cells, where cell color served a neutral marker for lineage segregation. As bulk substrate
concentration was decreased, we observed an increased propensity for cell lineages to segregate in space. This pattern held true under (A–C) surface
growth and (D–F) radial growth conditions.
doi:10.1371/journal.pcbi.1000716.g001

Figure 2. Lineage segregation in growing cell groups, visual-
ized as a function of increasing cell group size. We ran 50
simulations under each of the three substrate availability conditions
shown in Figure 1. Each simulation was initiated with 10% blue cells
and 90% red cells, and we calculated the segregation index relative to
the blue cell line (Methods). Dark lines are means; shaded regions are
running 95% confidence intervals.
doi:10.1371/journal.pcbi.1000716.g002

Spatial Structure and Cooperation in Cell Groups
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d~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GbulkDGY

mmaxrh2

s
ð1Þ

Here, Gbulk is the bulk liquid concentration of growth substrate,

DG is the growth substrate diffusion coefficient, Y is the yield with

which cells convert substrate to biomass, mmax is the maximum

specific cell growth rate, r is the cell biomass density, and h is the

height of the diffusion boundary layer (Figure 3). The smaller the

value of d, the thinner the cell group’s active layer.

We performed three new sets of simulations to test the

hypothesis that active layer depth controls cell lineage segregation.

Within each set, we varied active layer depth (d) by altering only

one parameter from Equation 1: maximum cell growth rate (mmax),

bulk growth substrate concentration (Gbulk), or growth substrate

diffusivity (DG). At the end of each simulation, we calculated the

segregation index. Our hypothesis makes two key predictions: 1)

cell lineage segregation should be inversely related to d, a proxy for

active layer depth. 2) The relationship between cell lineage

segregation and d should be independent of which parameter from

Equation 1 is altered.

The results are shown in Figure 4 and support both predictions.

Lineage segregation within cell groups declines with increasing d,

regardless of how d is altered. Using the dimensionless number d
renders our results independent of the exact values of Gbulk, DG, Y,

mmax, r, and h used to run simulations. It is the relative magnitudes

of these parameters in combination that ultimately matter.

How does active layer depth influence cell lineage segregation?

When growth substrate penetrates through most of a cell group

before being depleted, all cells grow and divide, pushing each

other into a homogeneous mixture. As active layer depth decreases

below the total thickness of a cell group, however, cells that

happen to fall below a critical distance from the group’s front can

no longer contribute to population expansion. Decreasing active

layer depth thus reduces the cell group’s effective population size,

rendering it more susceptible to genetic drift along its advancing

front. Because the cells are constrained in space, reductions in

genetic diversity along the group’s leading edge lead to localized

clusters of individuals that all descend from a common progenitor

[30]. This phenomenon – often referred to as sectoring or gene

surfing [28–30] – has been observed in agar colonies of

Paenibacillus dendritiformis [26], Escherichia coli and Saccharomyces

cerevisiae [27].

Reducing active layer depth even further yields an additional

qualitative shift in cell group structure: the expanding population

becomes sensitive to small irregularities along its leading edge.

Cells in the peaks of surface irregularities retain access to substrate

and grow into tower projections, while cells in the troughs of

surface irregularities lose access to substrate and cease growing.

This process is related to viscous fingering at the interface of two

fluids [39,41], and it is known to generate rough surface structure

along the leading edges of growing biofilms, bacterial colonies on

agar [34,35,40], and moving fronts in general [36]. From a

biological perspective, our analysis predicts that such surface

roughness is accompanied by abrupt genetic lineage segregation

along the front of an expanding population.

Bridging cell lineage segregation and social evolution
The spatial assortment of cell lineages is potentially critical for

traits that affect the reproduction of other individuals in the

population. It is increasingly recognized that cells express many

such social phenotypes [4,12], which are often involved in nutrient

acquisition and pathogenesis [42–45]. A common example is the

secretion of extracellular enzymes or nutrient-chelating molecules.

Cells that synthesize these substances must forgo a fraction of their

reproductive capacity [17–19], but if enough cells participate, all

Figure 3. The active layer of a cell group, illustrated for the
surface growth condition. Cells are colored according to their
growth rate: green cells are growing and make up the cell group’s
active layer. Black cells have become inactive due to lack of available
growth substrate. The left-hand panel illustrates the vertical profile of
growth substrate concentration along the dashed blue line.
doi:10.1371/journal.pcbi.1000716.g003

Figure 4. Lineage segregation within cell groups is inversely
related to active layer depth. The factors influencing cell group
active layer depth were combined into a single dimensionless number,
d. This number was varied across 3 sets of simulations by independently
altering mmax (maximum cell growth rate, red), Gbulk (bulk substrate
availability, black), or DG (substrate diffusivity, blue). Cell groups were
grown to 100 mm maximum height, and then the segregation index
was calculated (filled circles are means, and bars denote 95%
confidence intervals). The horizontal dotted line represents the final
segregation index of simulations in which d was infinitely large,
allowing all cells to grow at the maximum rate at all times. The
simulations show that cell lineage segregation is inversely related to
active layer depth, independently of how active layer depth is altered.
doi:10.1371/journal.pcbi.1000716.g004

Spatial Structure and Cooperation in Cell Groups
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can gain a net benefit (to the detriment of their host, in the case of

pathogens).

In many cases the evolution of simple cooperative phenotypes

depends on three factors: 1) c, the cost incurred by cooperative

individuals 2) b, the benefit gained by the receivers of cooperative

behavior, and 3) r, the correlation between genotypes of givers and

receivers of cooperation. Cooperation is predicted to evolve when

rb.c, a condition known as Hamilton’s Rule [9]. The cost and

benefit factors are measured in terms of reproductive fitness.

When cooperation is genetically determined, relatedness may be

thought of as the degree to which the benefits of cooperation are

preferentially distributed to other cooperative individuals.

The segregation index depicted in Figures 2 and 4 is equivalent

to a form of the relatedness coefficient in Hamilton’s Rule: both

measure the degree of biased interaction among relatives (here,

physical proximity amounts to biased interaction). As such, our

segregation index forms a bridge between social evolution theory

and the emergence of lineage segregation in cell groups, allowing

us to extend our prediction from the previous section. Because thin

active layer conditions generate lineage segregation, we predict

that decreasing active layer depth will promote interaction among

clonemates (increasing r in Hamilton’s Rule) and favor the

evolution of cooperation [9,12,23]. Positive spatial assortment of

related cells does not guarantee that cooperation will be favored,

however, as the same segregation that allows cooperators to

preferentially interact also increases the strength of competition

between them [24].

We tested our prediction by implementing a cooperative

phenotype in our model framework and competing cooperative

cells against exploitative cells that devote all resources to growth.

Cooperative individuals secrete a diffusible compound that

benefits all other cells in the local area (we will refer to the

compound as an extracellular enzyme). Local availability of the

secreted enzyme increases cell growth rate by a fold factor B, but

only after the enzyme’s concentration passes a threshold value, t.

Cooperative cells constitutively secrete the enzyme and incur a

fold decrease in growth rate of C x RE, where C is a cost scaling

factor and RE is the enzyme production rate. In our main analysis,

B = 3, C = 0.3, and RE ranges from 0 to 2. We derived these values

from experimental data on elastase, a secreted enzyme and

virulence factor of the bacterial pathogen Pseudomonas aeruginosa

[19,46].

Lineage segregation favors cooperation in cell groups
We asked whether a cooperative cell line, which pays a cost to

produce a diffusible, publicly beneficial compound, could out-

compete an exploitative cell line that invests all of its resources into

growth. Each competition simulation began with a randomly

distributed 1:1 mixed monolayer of the two cell types, and cell

groups were grown to a maximum height of 100 mm. We then

calculated the evolutionary fitness of the cooperative cell line,

relative to that of the exploitative cell line (Methods). This

competition pairing was repeated over a range of extracellular

enzyme production rates on the part of cooperative cells. The

higher the enzyme production rate, the more rapidly cells accrue

its benefit, but the larger the cost suffered by cooperative cells.

Finally, all competition pairings were repeated across three active

layer depth conditions (d = 10, 2, 1), representing the three cell

group structure regimes described in Figure 1.

Figure 5 summarizes the results of our competition simulations.

When active layers are thick (d = 10), leading to well mixed cell

lineages, the extracellular enzyme is homogenously distributed

through cell groups. The non-cooperative cell line is therefore able

to consistently exploit and outcompete the cooperative cell line

(Figure 5A). This result is consistent with numerous observations

that exploitative mutants outcompete enzyme-secreting bacteria

when they are inoculated together in liquid culture, in which cell

lineages largely remain mixed [17–20].

When active layer depth is decreased (d = 2), there is a narrow

range of extracellular enzyme production rates at which

cooperative cells outcompete exploitative cells (Figure 5B). The

critical difference is that cooperative cells and exploitative cells no

longer remain well mixed; rather, they segregate into clonal

regions. As a result, the benefit of extracellular enzyme released by

cooperative cells accrues asymmetrically to other cooperative cells.

The range of enzyme production rates at which cooperative cells

prevail is narrow, however, because the benefits of lineage

segregation (increasing r in Hamilton’s Rule) can be outweighed

by the cost of higher extracellular enzyme production (increasing c

in Hamilton’s Rule).

Further decreasing active layer depth (d = 1) leads to the growth

of spatially isolated, clonal cell towers. Under these conditions, the

benefits of a cooperative secreted enzyme are distributed even

more asymmetrically to other cooperative cells. Consistent with

our predictions, this allows cooperative cells to outcompete

exploitative cells over a larger range of enzyme production rates

(Figure 5C). We also noted the sizable variation between

simulation runs when d = 1, particularly if extracellular enzyme

production rates were low (Figure 5C, enzyme production rate =

0, 0.25, 0.5). This variation reflects a founder effect; it manifests

most strongly when there is no or little difference between the

competitive abilities of cooperative and exploitative cell lines,

rendering the outcome of each simulation subject to chance events

that determine which cells seed the few tower structures that

emerge from an expanding cell group.

Our results show that thin active layer conditions allow cells

expressing cooperative phenotypes to outcompete exploitative cells

within a single cell group. To better account for the long-term

evolution of a metapopulation comprising many cell groups, we

performed an invasion analysis to determine whether a novel

cooperative mutant can spread through a metapopulation

otherwise containing only exploitative cells (Supporting Informa-

tion, Text S1). We also examined the reciprocal case to determine

if a rare exploitative mutant can invade a metapopulation

otherwise containing only cooperative cells [32,33]. We found

that cooperation can invade under a large swath of parameter

space, but only under thin active layer conditions that promote

lineage segregation can cooperative cells eliminate exploitative

cell types on a metapopulation scale (Supporting Information,

Figure S2).

The results of both our local competition and invasion analyses

are robust to the cost/benefit ratio of cooperation, with one partial

exception when cells invest very heavily into an expensive

cooperative phenotype (Supporting Information, Figure S3).

Conclusion
Our study indicates that an order of magnitude change in

nutrient availability, nutrient diffusivity, cell metabolic efficiency,

cell growth rate, or biomass density can shift cell groups from a

regime of lineage mixing to a regime of pronounced lineage

segregation. The number d defined in Equation 1 relates these

parameters to the depth of a cell group’s active layer, which

governs how cell lineages become spatially assorted over time.

Thick active layers promote lineage mixing, while decreasing

active layer depth generates increasingly strong lineage segrega-

tion. Cell lineage segregation, in turn, favors the evolution of

cooperative phenotypes.

Spatial Structure and Cooperation in Cell Groups
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Previous work performed with bacteria in liquid planktonic

culture has concluded that cooperative cell phenotypes cannot be

selectively favored within a single population also containing

exploitative cells [17,19,20]. Our study shows that this conclusion

will not always hold because cooperative cells can spontaneously

segregate from exploitative cells when they are constrained in space.

Our results also imply that, given realistic parameters for a

cooperative cell phenotype, the benefits of preferential interaction

between cooperators can outweigh the costs of increased compe-

tition between related cells that are clustered together in space [24].

Like all models, ours uses simplifying assumptions. We de-

liberately omit some physical processes, such as shear stress, that

may be applied to cell groups in the real world [47]. Our simulations

also do not consider active cell motility, which in reality could

influence cell group structure and evolution. We have additionally

assumed that cell phenotypes of interest, such as extracellular

enzyme secretion, are expressed constitutively or not at all. In

nature, the expression of many social phenotypes is adjusted in

response to environmental cues [48–50]. Though these simplifica-

tions should be assessed theoretically and empirically, they were

critical in allowing us to identify basic physical and biological

parameters that control cell group structure and evolution.

In summary, our model suggests that clusters of genetically

related cells can emerge quite easily in spatially constrained cell

groups, even when cells possess no mechanism for actively

gathering with clonemates. Lineage segregation allows cooperative

cells to outcompete exploitative cells, and accordingly we predict

that localized cooperation will evolve more readily in cell groups

than suggested by models and experiments that only consider

liquid environments.

Methods

Model Framework
We simulate cell groups using an individual-based model

described in detail previously [31]. Simulation parameters are listed

in Table S1 (Supporting Information). Cell growth is a function of

the local microenvironment, namely the concentrations of solutes

such as growth substrate (G) and extracellular enzyme (E)

(Supporting Information, Table S2). The uptake of growth substrate

by each cell is considered when calculating the spatial gradients of

substrate concentration. We achieve this by solving a reaction-

diffusion equation, where r is a growth rate expression:

d G½ �
dt

~DG+2 G½ �{ 1

Y
r ð2Þ

Following the common assumption that reaction-diffusion is

much faster than cell growth and division [31], our simulations

proceed according to the following steps:

N Cell growth and division

1) Every cellular agent grows according to local substrate

concentration and (for competition simulations) extracellular

Figure 5. Cooperation is favored as cell group active layer
depth decreases and lineage segregation increases. We
examined competition between enzyme-secreting cells (cooperative,
labeled blue) and non-secreting cells (exploitative, labeled red) under
three different active layer conditions: d = 10 (A, well mixed lineages),
d = 2 (B, lineage sectoring), and d = 1 (C, lineage tower formation). Each
empty black circle denotes the relative fitness of the cooperative cell
type at the end of a single simulation (40 replicates per column).
Sample images (drawn from simulations indicated by black arrows) are
shown in the corner of each plot, along with concentration [g/L] profiles

of the extracellular enzyme. (A) When cell lineages remain mixed,
cooperative cells are always outgrown by exploitative cells. (B) When
cell lineages segregate into sectors, there is a narrow range of enzyme
production rates at which cooperative cells outcompete exploitative
cells. (C) When lineages are strongly segregated into cell tower
projections, there is a large range of enzyme production rates at which
cooperative cells outcompete exploitative cells.
doi:10.1371/journal.pcbi.1000716.g005

Spatial Structure and Cooperation in Cell Groups
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enzyme availability. Agents that exceed a critical radius are

divided into two new agents.

2) Agents that now overlap due to their growth and/or

division in the previous step are moved so as to eliminate

overlap throughout the cell group. This process causes the

cell group’s front to advance in space.

N Update solute concentration fields

3) Bulk concentrations of all solutes (growth substrate or

extracellular enzyme) are held constant throughout the

simulation. Thus, the bulk liquid (the region outside the

boundary layer) acts as an infinite source, in the case of

substrate, or a perfect sink, in the case of extracellular

enzyme.

4) The new spatial concentration fields of all solutes are

determined by solving Equation 2 (and an analogous

equation for extracellular enzyme concentration) to steady

state at each iteration.

Computation
The individual-based simulation framework was written in the

Java programming language, and its related numerical methods are

detailed elsewhere [31]. Briefly, they include the Euler method to

grow cells at each iteration, a hard-sphere collision detection method

to identify pushing events between neighboring agents, and the FAS

multigrid to solve reaction-diffusion equations to steady state [51].

The 3D images in Figure S1 where rendered using POV-Ray. All

other figures were prepared using Matlab (the Mathworks, Inc.). The

computations in this paper were run on the Odyssey cluster sup-

ported by the Harvard University FAS Research Computing Group.

Calculation of the segregation index
To obtain the segregation index for a cell group at a single point

in time, we first identify every actively growing cell. These M cells

are indexed by Ai: A1, A2, …, AM. To measure segregation with

respect to a single focal cell Ai, we identify all other individuals

within a distance of 10 cell lengths. The N cells in this

neighborhood are indexed by aj: a1, a2, …, aN.

We define a genetic identity function, g(aj):

g aj

� �
~

0, aj is not the same genotype colorð Þ as Ai

1, aj is the same genotype colorð Þ as Ai

�
ð3Þ

and a metabolic activity function, m(aj):

m aj

� �
~

G½ �
G½ �zKG

ð4Þ

where [G] is the local concentration of growth substrate, and KG is

the half-saturation constant for cell growth rate.

Segregation with respect to a focal cell, s(Ai), is calculated as the

mean product of the g and m functions for every cell in its

neighborhood:

s Aið Þ~
1

N

XN

j~1

g aj

� �
m aj

� �
ð5Þ

Finally, we define the segregation index for the entire cell group

as the mean value of s(Ai) across all metabolically active cells:

segregation index~
1

M

XM
i~1

s Aið Þ ð6Þ

Our segregation index measures the degree to which co-

localized, metabolically active cells are clonally related to each

other. The index is equal to a form of the relatedness coefficient

from social evolution theory under the following assumptions: 1) A

cell expressing the cooperative phenotype equally benefits all other

individuals within a 10 cell-length radius; 2) Each cell within range

of receiving cooperative benefits makes a contribution to mean

relatedness proportional to its growth rate; 3) Cell groups are

seeded randomly from a large population pool.

Derivation of the number d
The dimensionless number, d, is a proxy for the depth to which

growth substrate penetrates into a cell group before being depleted

by cell metabolic activity. d is derived by non-dimensionalizing

Equation 2. We normalize growth substrate concentration by its

bulk liquid concentration, ĜG~ G½ �=Gbulk, and local biomass by cell

biomass density, x = X/r. We then normalize the space coordi-

nates by the height of the boundary layer, h. The steady state,

dimensionless version of Equation 2 becomes:

0~
GbulkDGY

mmaxrh2
+2ĜG{

ĜG

ĜGzKG=Gbulk

x ð7Þ

Note that the factor multiplying the Laplacian of ĜG, +2ĜG, is the

square of d as defined in the main text. d is also the inverse of the

Thiele modulus [52], a number commonly used in chemical

engineering to quantify the activity of solid catalysts.

Calculation of evolutionary fitness
We calculate the competitive fitness of each cell line as the mean

number of rounds of cell division per unit time that each achieves

over the course of a simulation:

wS~
1

tend

log2

NS,tend

NS,0

ð8Þ

where NS,t is the number of cells of strain S present within the cell

group at time t. The relative fitness of a strain S1 in local

competition with another strain S2 is defined as:
wS1

wS2

.

Supporting Information

Text S1 Evolutionary invasion analysis for cooperative extracel-

lular enzyme secretion.

Found at: doi:10.1371/journal.pcbi.1000716.s001 (0.04 MB

DOC)

Figure S1 3-D simulations replicate the results of 2-D

simulations examining cell lineage segregation. Cell lineage

segregation increases as environmental growth substrate concen-

tration decreases. This result is valid for both (A) surface growth

and (B) radial growth conditions.

Found at: doi:10.1371/journal.pcbi.1000716.s002 (8.22 MB TIF)

Figure S2 A rare cooperative cell line can often invade a

metapopulation of exploitative cells. Mean invasiveness (filled

circles, with bars denoting SD) from 40 replicate simulations was

calculated for a cooperative cell line invading a metapopulation of
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exploitative cells, and for an exploitative cell line invading a

metapopulation of cooperative cells. (A) Under thick active layer

conditions that promote lineage mixing, a rare cooperative cell line

can invade from rarity (blue trace), despite losing in local

competition with exploitative cells (see Main Text, Fig. 5A). The

exploitative cell type can also invade from rarity (red trace). (B) and

(C) Under thinner active layer conditions, cooperative cells can

again invade from rarity (blue traces), but exploitative cells usually

cannot (red traces).

Found at: doi:10.1371/journal.pcbi.1000716.s003 (0.89 MB TIF)

Figure S3 The local competition and global invasion analyses

were repeated with a higher cost/benefit ratio for cooperative

enzyme secretion. Here, B = 0.5 and C = 0.3. Panels A–C

summarize the local competition simulations. As for Figure 5 in

the main text, each open black circle represents the reproductive

fitness of the cooperative strain after a single simulation. (A) Under

thick active layer conditions, cooperative cells always lose in local

competition. (B–C) Under thin active layer conditions, cooperative

cells can prevail over exploitative cells, though under a much

narrower range of enzyme production rates than for lower cost/

benefit ratio of cooperation (Compare with Figure 5B–C, Main

Text). Panels D–F summarize the global invasion analysis. Each

filled circle denotes mean invasiveness, and bars denote standard

deviations. (D) Cooperative cells can often invade under thick

active layer conditions (blue trace), even though such conditions

prevent them from prevailing in local competition. The exploit-

ative cell type can also strongly invade (red trace). (E–F) Under

thin active layer conditions, there is a narrower range of enzyme

production rates at which cooperative cells can invade (blue

traces). When cooperative cells can invade, however, they can also

prevent the exploitative cell type from re-invading (red traces are

below unity). In this important sense, our results are robust. It

should be noted, however, that when cooperative cells invest

heavily into enzyme secretion, they may fare better in global

competition under thick active layer conditions that promote

lineage mixing (For enzyme production rate = 2, the blue trace is

above the invasion criterion in D, but below the invasion criterion

in E and F). This departure from our broader conclusion occurs

because thin active layer conditions, while promoting cell lineage

segregation and generally favoring cooperation, also increase the

strength of competition within cell groups. As a result, when it

commits a large amount of resources to enzyme secretion, the

cooperative cell line can fair so poorly in local competition that it

fails to invade on a global scale.

Found at: doi:10.1371/journal.pcbi.1000716.s004 (1.28 MB TIF)

Table S1 List of parameters used in our simulation models and

subsequent analyses.

Found at: doi:10.1371/journal.pcbi.1000716.s005 (0.07 MB PDF)

Table S2 Stoichiometry of cell metabolism used in our

simulation models.

Found at: doi:10.1371/journal.pcbi.1000716.s006 (0.19 MB PDF)
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